PHYSICS

1. In an experiment, the percentage of error occurred in the in the measurement of physical quantities A, B, C and D are 1%, 2%, 3% and 4% respectively. Then the maximum percentage of error in the measurement

X, where X =
$$\frac{A^2B^{1/2}}{C^{1/3}D^3}$$
, will be

(A) 10 % (B)
$$\left(\frac{3}{13}\right)$$
%
(C) 16% (D) - 10%

2. The tension in the string revolving in a vertical circle with a mass m at the end when it is at the lowest position

(A)
$$\frac{mv^2}{r}$$
 (B) $\frac{mv^2}{r}$ - mg
(C) $\frac{mv^2}{r}$ + mg (D) mg

3. A light string passes over a frictionless pulley. To one of its ends a mass of 6 kg is attached and to its other end a mass of 10 kg is attached. The tension in the string will be -

> (A) 50 N (B) 75 N

A thief is running away on a straight road in a jeep moving with a speed of 9 m s⁻¹. A police man chases him on a motor cycle moving at a speed of 10 m s⁻¹. If the instantaneous separation of the jeep from the motorcycle is 100m, how long will it take for the police man to catch the thief?

(A) 1s	(B) 19s
(C) 90s	(D) 100s

5. A ball is dropped from a high rise platform at t = 0 starting from rest.

After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two ball meet at t =18s. What is the value of v?

	$[take g = 10 ms^{-2}]$
(A) 75 ms ⁻¹	(B) 55 ms ⁻¹
(C) 40ms ⁻¹	(D) 60ms

6. The velocity of a projectile at the initial point A is $(2\hat{i}+3\hat{j})$ m/s. It's velocity (in m/s) at point B is :

(A) $-2\hat{i} + 3\hat{j}$ (B) $2\hat{i} - 3\hat{j}$ (C) $-2\hat{i} + 3\hat{j}$ (D) $-2\hat{i} - 3\hat{j}$

7. A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30° the box starts to slip and slides 4.0 m down the plank in 4.0s. The coefficients of static and kinetic friction between the box and the plank will be, respectively :

(D) 0.6 and 0.6

8. The velocity v (in cm/sec) of a particle is given in terms of time t (in sec) by the relation $v = at + \frac{b}{t+c}$, the dimensions of a, b and c are-

> (A) $a = L^{2}$, b = T, $c = LT^{2}$ (B) $a = LT^{2}$, b = LT, c = L(C) $a = LT^{-2}$, b = L, C = T(D) a = L, b = LT, $c = T^{2}$

(A) 0.6 and 0.5

(C) 0.4 and 0.3

9. Find the acceleration of the 6 Kg block in the figure. All the surfaces and pulleys are

	`				
	smooth. Also the str	ings are inextensible	14.	12.044 x 1023 ato	ms of oxygen contains
	and light. [Take g = 1	0 m/s ²]			
		Θ		(A) 1 mole of oxyge	n
	2Kg/mm			(B) 2 moles of oxyg	en
		бкд		(C) 3 moles of oxyg	en
				(D) 4 moles of oxyg	en
	2kg		15.	What is the norma	ality of lead (II) nitrate
	(A) 3 m/s ²	(B) 5 m/s ²		if the density of it	s 26% (w/w) aqueous
	(C) 7 m/s ²	(D) 9 m/s ²		solution is 3.105	5 g/mL? Take molar
		· · /		mass of lead (II) r	nitrate to be 331g/mol.
10.	Taking into acco	ount the significant		(A) 2.437 N	(B) 4.878 N
	figures what is th	The value of $(9.99m - 1)$		(C) 0.243 N	(D) 0.488 N
	0.0099m)?				
	(A) 9.98 m	(B) 9 980 m	16.	In the reaction, 2	$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + I_2 \rightarrow S_4$
	(() 99m	(D) 9 9801 m		$2I^{-}$, the eq. wt. (of $S_4O_6^{-2}$ is equal to its-
	(0) 7.7 m	(D) 7.7001 m		(A) IVIOI. WT.	(B) Mol. wt./2
				(C) 2 × moi. wt.	(D) MOI. Wt./6
	1(C) 2(C) 3(B)	1 (D) 5 (A) 6 (B)	17		und contains atoms A
	$7(\Delta) \otimes C \otimes Q(\Delta)$	4.(D) 5.(A) 0.(D) 10 (A)	17.	P and C The	avidation number
	/.(//) O.(0) /.(/)	10.(1)		of Δ is ± 2 R is	± 5 and C is $= 2$ The
	CHENNICT			possible formula	r_{0} of the compound
		<u>Rĭ</u>		would be :	
				(A) ABC ₂	(B) $A_2(BC_3)_2$
11.	Which of the follow	ving is paramagnetic?		(C) $A_3(BC_4)_2$	(D) $A_3(B_4C)_2$
	(A) O_2^-	(B) CN ⁻			
	(C) CO	(D) NO	18.	PCI ₅ exists but N	CI ₅ does not, because :
				(A) Nitrogen has n	no vacant 2d-orbitals
12.	The orbital a	ngular momentum		(B) N and CI have a	almost same EN
	corresponding to n	= 4 and m = -3 is :		(C) N-atom is muc	h smaller than P-atom
	(A) 0	(B) $\frac{h}{\sqrt{2}}$		(D) Nitrogen is hig	phly inert
	$\sqrt{6}h$	$\sqrt{2\pi}$			
	(C) $\frac{\sqrt{6}n}{2\pi}$	(D) $\frac{\sqrt{3}\pi}{\pi}$	19.	The correct order	of C–N bond length in
				the given compou	nds is :
13.	Rearrange the follo	wing (I to IV) in the		P : CH₃CN	
	order of increasing	masses :		Q : HNCO	
	I. 0.5 mole of O ₃			R : CH ₃ CONH ₂	
	II. 0.5 gm atom of o	xygen		(A) P > Q > R	(B) $P = Q = R$
	III. 3.011 × 10 ²³ mc	lecules of O ₂		(C) R > Q > P	(D) R > P > Q
	IV. 5.6 litre of CO_2 a	t STP		T I C C C C C	
	(A) < V < <	(B) < < V <	20.	The effect of lanth	anoid contraction in
	(C) IV < II < III < I	(D) I < II < III < IV		the lanthanoid ser	ies of elements by and
				large means :	

	(A) increase in atomic radii and	26.	The number of signals that can be sent
	decrease in ionic radii		by 6 flags of different colours
	(B) decrease in both atomic and ionic		taking one or more at a time is
	radii		(A) 63 (B) 1956
	(C) increase in both atomic and ionic radii		(C) 720 (D) 21
	(D)decrease in atomic radii and increase	27.	If z is the complex number then the
	in ionic radii		number of solutions of the equation
			$z^2 + z ^2 = 0$ is
			(A) 1 (B) 2
	ANSWER-RET $11 (A) 12 (D) 12 (A) 14 (D) 15 (D)$		(C) 3 (D) infinitely many
	16 (B) 17 (C) 18 (A) 19 (C) 20 (B)		
	10.(B) 17.(C) 10.(A) 17.(C) 20.(B)	28.	The sum of integers from 1 to 100 that
			are divisible by 2 or 5 is
	<u>MATHEMATICS</u>		(A)3000 (B) 3050
			(C) 3600 (D) 3250
21.	If $A = \{a, e, i, o, u\}$, then number of		
	elements in the Power set of A is	29.	If $0 \le x < 2\pi$, then the number of real
	(A) 2^5 (B) $2^5 - 1$		values of x , which satisfy the equation
	(C) 2^4 (D) $2^4 - 1$		$\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is
			(A) 7 (B) 9
22 .	sin 75°=		(C) 3 (D) 5
	(A) $\frac{\sqrt{3}+1}{5}$ (B) $\frac{\sqrt{3}-1}{5}$		
	$\sqrt{2}$ $\sqrt{2}\sqrt{2}$	30.	The middle term in the expansion of
	(C) $\frac{\sqrt{3}}{2\sqrt{2}}$ (D) $\frac{\sqrt{3}}{2}$		$\left(\frac{x}{2} + 9y\right)^{10}$ is
			(A) ${}^{10}C_{-} \times {}^{4} \times {}^{6} \cdot {}^{38}$ (B) ${}^{10}C_{-} (3r \times {}^{5})^{5}$
23.	If $10^n + 3.4^{n+2} + k$ is divisible by 9 for all		(c) ${}^{10}C_c x^4 y^6$ (D) ${}^{10}C_c x^5 y^5$
	$n \in N$, then the least positive integral		
	value of k is		ANSWER-KEY
	(A) 5 (B) 3		21.(A) 22.(C) 23.(A) 24.(B) 25.(A)
	(C) / (D) 1		26.(A) 27.(D) 28.(B) 29.(A) 30.(B)
24.	The domain and range of the real		
	function defined by $f(x) = x - 1 $ are		BIOLOGY
	(A) Domain : R , Range : [1, ∞)		
	(B) Domain : R, Range : [0, ∞)	21.	Read the following statements and selec
	(C) Domain : [1, ∞), Range : R		the correct ones.
	(D) Domain : [1, ∞), Range : [0, ∞)		(i) Increase in mass and increase in
			number of individuals are twin
25.	Solve the inequality for real		characteristics of growth.
	$x_{1} \frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$		(ii) Metabolic reactions can be
	(A) $x \in (-\infty, 2]$ (B) $x \in [2, \infty)$		demonstrated outside the body in
	(C) $x \in [5, \infty)$ (D) $x \in (-\infty, 3]$		isolated cell-free systems.
			(iii) 'Response to stimuli' is a defining
			property of living organisms.

(A) (i) and(ii)	(B) (ii) and (iii)
(C) (i) and (iii)	(D) (i), (ii) and (iii)
Linnaeus describ	ed 5900 species of
plants in his boo	k(1753) and 4200
species of anima	ls in his book(1758)
(A) Philosophia I	Botanica, Genera
Plantarum	
(B) Historia Natu	uralis, Species
Plantarum	
(C) System Natu	rae, Species Plantarum
(D) Species Plant	tarum, System
Naturae	
Find out the corr	ect statement.
(A) In lichens, th	e algal component is
called phycobior	nt and fungal component
is known as myc	obiont, which are
heterotrophic an	id autotrophic
	 (A) (i) and(ii) (C) (i) and (iii) Linnaeus descrik plants in his boo species of anima (A) Philosophia B Plantarum (B) Historia Natu Plantarum (C) System Natur (D) Species Plant Naturae Find out the corrr (A) In lichens, th called phycobior is known as myc heterotrophic an

22.

23.

respectively. (B) Viroid contains RNA of low molecular weight and protein coat.

- (C) A virus contains both RNA and DNA.
- (D) Viruses are obligatory parasites.
- 24. How many organisms in the list given below are autotrophs? Lactobacillus, Nostoc, Chara, Nittrosomonas, Nitrobacter, Streptomyces, Saccharomyces, Trypanosoma, Porphyra, Wolffia.
 (A) Four
 (B) Five
 (C)Six
 (D) Three
- **25.** The first vascular members with decendent game tophytes in the plant kingdom are.

(A) gymnosperms(B) bryophytes(C) pteridophytes(D) fungi.

26. Select the wrong statement.(A) In Oomycetes, female gamete is smaller and motile, while male gamete is larger and non- motile.

(B) Chlamydomonas exhibits iso gamy, anisogamy and oogamy.
(C) Isogametes are similar in structure, function and behavior.
(D) Anisogametes differ either in size or behavior.

27. Match the following and select the correct option.

COLUMN I	COLUMN II
A Choanocytes	1. Platyhelminthes
B Cnidoblasts	2. Ctenophora
C Flame cells	3.Porifera
D Nephridia	4. Coelenterata
E Comb plates	5. Annelida
(A) A-2,B-1, C-4, D-5	, E-3
(B) A-2, B-4, C-1, D-5	, E-3
(C) A-5, B-1, C-3, D-2,	E-4
(D) A-3,B-4, C-1, D-5	, E-2

- 28. Which of the following statements(s) regarding coelenterates is/are wrong?

 Cnidoblasts are present on the tencacles and on the body.
 Diplobalstic animals with cellular level of organization.
 III. Polyp forms arefree swimming.
 IV. Exhibits metagenesis.
 V. Polyps produce medusae sexually and medusae form polyps asexually.
 II and IV only (B) III and V only
 II and III only (D) II, III and V only
- 29. Identify the correct set of statements:
 (a) The leaflets are modified into pointed hard thorns in citrus and bougainvillea
 (b) Axillary buds form slender and spirally coiled tendrils in cucumber and pumpkin
 (c) Stem is flattened and fleshy in Opuntia and modified to perform the

function of leaves.

(d) Rhizophora shows vertically upward growing roots that help to get oxygen for respiration
(e) Subaerially growing stems in grass and strawberry help in vegetative

propagation

Choose the correct answer from the

- options given below:
- (A) (a) and (d)
- (B) (b), (c), (d) and (e) only
- (C) (a), (b), (d) and (e) only
- (D) (b) and (c) only
- **30.** The appearance of recombination nodules on homoglogous chromosomes during meiosis characterizes:
 - (A) Bivalent
 - (B) Sites at which crossing over occurs
 - (C) Terminalization
 - (D) Synaptonemal complex

ANSWER-KEY

21.(D) 22.(D) 23.(D) 24.(C) 25.(C) 26.(A) 27.(D) 28.(D) 29.(B) 30.(B)

MENTAL ABILITY

- **31.** Pointing to Amit, Anita said ," His mother is the only daughter of my mother" .How is Anita related to the Amit?
 - (A) Mother(B) Daughter(C) Sister(D) Grandmother
- 32. P and Q are brothers , X and Y are sisters, son of P is the brother of Y. How is Q related to X?
 (A) Father
 (B) Brother
 (C) Daughter
 (D) Uncle
- 33. If 3rd January of a year was Thursday, What will be the day on 25th January of the same year?
 (A) Thursday
 (B) Friday
 (C)Saturday
 (D) Sunday

- 34. How many days were there from January 2, 1995 to March 15, 1995?
 (a) 73
 (b) 74
 (c) 71
 (d) 35
- **35.** If + means \times , means \div , \times means and \div means +, then the value of $32 \div 8 - 4 \times 12 + 4$ (A) -14 (B) -41 (C) -40 (D) -12
- **36.** Count the number of rectangules in the following figure:

37. Which number is opposite to face 3?

- 38. Janki started from her house and walked 2 km towards North. Then, she took a right turn and covered 1 km, then she again took a right turn and walked for 2 km. In which direction is she going?
 (A) North
 (B) East
 (C) South
 (D) West
- **39.** Direction: Study the problem figures and try to establish the relationship between them. From the answer figures, pick out the figure which most appropriately completes the series.

- **40.** Vishnu ranks 16th from the top and 49th from the bottom in a class. How many students are there in the class?
 - (A) 66 (B) 65
 - (C) 64 (D) cannot be determined

ANSWER-KEY

31.(A) 32.(D) 33.(B) 34.(A) 35.(A) 36.(A) 37.(B) 38.(C) 39.(A) 40.(C)

PHYSICS

1. The position x of a particle with respect to time t along x-axis is given by $x = 9t^2 - t^3$ where x is in metre and t in second. What will be the position of this particle when it achieves maximum speed along the + x direction?

(A) 32 m	(B) 54 m
(C) 81 m	(D) 24 m

- A car of mass 1000 Kg negotiates a banked curve of radius 90 m on a frictionless road. If the banking angle is 45°, the speed of the car is :
 - (A) 20 ms^{-1} (B) 30 ms^{-1}
 - (C) 5 ms^{-1} (D) 10 ms^{-1}
- 3. A plane flying horizontally at a height of 1500 m with a velocity of 200 ms⁻¹ passes directly overhead an antiaircraft gun. Then the angle with the horizontal at which the gun should be fired for the shell with a muzzle velocity of 400 m s⁻¹ to hit the plane, is -

(A) 90°	(B) 60°
(C) 30°	(D) 45°

4. Three blocks A, B and C of masses4 kg, 2 kg and 1 kg respectively, are in contact on a frictionless surface, as shown. If a force of 14 N is applied on the 4 kg block then the contact force between A and B is :

5. A system consists of three masses $m_{1'} m_2$ and m_3 connected by a string passing over a pulley P. The mass m_3 hangs freely and m_2 and m_1 are on a rough horizontal table (the coefficient of friction = μ). The pulley is frictionless and of negligible mass. The downward acceleration of mass m_1 is :

- 6. One watt-hour is equivalent to -(A) 3.6×10^{3} Joule (B) 3.6×10^{-3} Joule (C) 6.3×10^{3} Joule (D) 6.3×10^{-3} Joule
- 7. A particle is moving such that its position coordinates (x,y) are (2m, 3m) at time t = 0, (6m, 7m) at time t = 2s and (13m, 14m) at time t = 5 s, Average velocity vector (\vec{v}_{av}) from t = 0 to t = 5 s is : (A) $\frac{1}{5}(13\hat{i}+14\bar{j})$ (B) $\frac{7}{3}(\hat{i}+\bar{j})$ (C) $2(\hat{i}+\bar{j})$ (D) $\frac{11}{5}(\hat{i}+\bar{j})$
- 8. An experiment measures quantities x, y, z and then t is calculated from the data as t = $\frac{xy^2}{z^3}$. If percentage errors in x, y and z are respectively 1%, 3%, 2%, then percentage error in t is : (A) 10 %

(A) 10 %	(B) 4 %
(C) 7 %	(D) 13 %

- 9. A parachutist after bailing out falls 50 m without friction. When parachute opens, it decelerates at 2 m/s². He reaches the ground with a speed of 3 m/s. At what height approximately, did he bail out?
 (A) 91 m
 (B) 182 m
 (C) 293 m
 (D) 111 m
- 10. A 120 m long train is moving towards west with a speed of 10 m/s. A bird flying towards east with a speed of 5 m/s crosses the train. The time taken by the bird to cross the train will be -
 - (A) 16 sec (B) 12 sec
 - (C) 10 sec (D) 8 sec

ANSWER-KEY

1.(B) 2.(B) 3.(B) 4.(A) 5.(C) 6.(A) 7.(D) 8.(D) 9.(C) 10.(D)

CHEMISTRY

11. Orbital angular momentum of an electron is $\sqrt{3}\frac{h}{\pi}$. Then, the number of orientations

of this orbital in space are :

- (A) 3 (B) 5 (C) 7 (D) 9
- 12. The radius of an atomic nucleus is of the order of————

 (a) 10⁻¹⁰ cm
 (b) 10⁻¹³ cm
 (c) 10⁻¹⁵ cm
 (d) 10⁻⁸ cm
- A gas XH₂ has molar mass 34 g/mol. What is the molar mass of XO₃(nearly)?
 (A) 64 g/mol
 (B) 82 g/mol
 (C) 80 g/mol
 (D) cannot be found
- How many grams of Sodium dichromate (Na₂Cr₂O₇) should be added to a 50 mL volumetric flask to prepare 0.025 M

- Na₂Cr₂O₇ solution, when the flask is filled upto the mark with water? [Mole concept] (A) 0.3375 g (B) 1.25 g (C) 337.5 g (D)Cannot Be determined
- 15. The molarity of a HCl solution, which is 1.825 % (w/v) is :
 (A) M/10 (B) M/2
 (C) M/5 (D) M/20
- **16.** Resonance hybrid of nitrate ion is :

(B)
$$-\frac{1}{3}$$
 O
 $N = 0 -\frac{1}{3}$ O
 $-\frac{1}{2}$ O
(C) $-\frac{1}{2}$ O
 $N = 0 -\frac{1}{3}$ O
 $-\frac{1}{2}$ O
 $-\frac{1}{2}$ O
 $-\frac{1}{2}$ O
 $-\frac{1}{2}$ O

1/

- **17.** Correct order of bond length is (A) $CO_3^{2-} > CO_2 > CO$ (B) $CO_2 > CO > CO_3^{2-}$ (C) $CO > CO_2 > CO_3^{2-}$ (D) None of these
- 18. Aluminiumis usually found in +3 oxidation state. In contrast, thalium exists in +1 and +3 oxidation states. This is due to :
 (A) inert pair effect
 (B) lanthanoid contraction
 (C) diagonal relationship
 (D) lattice effect

19.	In ge	eneral, th	e prope	rtie	es that o	decr	ease
	and	increase	down	а	group	in	the
	perio	odic table,	respect	ivel	y, are :		
	(A) a	tomic rac	lius and	ele	ctronega	ativi	ty
	(B) e	lectroneg	ativity a	nd	atomic r	radiu	JS
	(C) e	lectron ga	ain entha	alpy	/ and		
	elect	ronegativ	ity				
	(D) e	electroneg	ativity a	nd			
	elect	ron gain e	enthalpy	,			

- 20. Number of moles of electrons taken up when 1 mole of NO_3^- ions is reduced to 1 mole of NH₂OH is : (A) 2 (B) 4
 - (C) 5 (D) 6

ANSWER-KEY

11.(C) 12.(B) 13.(C) 14.(A) 15.(B) 16.(B) 17.(A) 18.(A) 19.(B) 20.(B)

MATHEMATICS

- **21.** All subsets of A= $\{1, 2, 3\}$ is (A) ϕ , $\{1\}$, $\{2\}$, $\{3\}$ (B) ϕ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1\}\{2\}\{3\}$ (C) ϕ , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}\{1,2,3\}$ (D) $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$
- 22. If $tan \theta = \frac{-4}{3}$, then $sin\theta$ is (A) $\frac{-4}{5}$ but not $\frac{4}{5}$ (B) $\frac{-4}{5}$ or $\frac{4}{5}$ (C) $\frac{4}{5}$ but not $-\frac{4}{5}$ (D) none of these
- 23. Let P(n): " $2^n < (1 \times 2 \times 3 \times ... \times n)$ ". Then the smallest positive integer for which P (n) is true is (A) 1 (B) 2 (C) 3 (D) 4
- 24. The domain and Range of the real function defined by $f(x) = \sqrt{9 - x^2}$ is. (A) Domain: [-3, 3] Range: [0, 3](B) Domain: $(-\infty, -3) \cup (3, \infty)$, Range: $[0, \infty)$

(C) Domain: $\{-3, 3\}$, Range:[0, 3](D) Domain:(-3, 3), Range: $(-\infty, 0]$

- **25.** Ravi obtained 70 and 75 marks in first two unit test. Find the minimum marks he should get in the third test to have an average of at least 60 marks. (A) $x \ge 35$ (B) $x \le 35$ (C) $x \ge 30$ (D) $x \le 30$
- 26. The number of words which can be formed out of the letters of the word ARTICLE, so that vowels occupy the even place is (A) 72 (B) 144 (C) 7! (D) ${}^{4}C_{4} \times {}^{3}C_{3}$
- 27. The multiplicative inverse of 2 3*i* is (A) 2 + 3*i* (B) $\frac{2}{13} + \frac{3}{13}i$ (C) $\frac{2}{\sqrt{13}} + \frac{3}{\sqrt{13}}i$ (D) $\frac{2}{13} - \frac{3}{13}i$
- 28. In a school there are 20 teachers who teach mathematics or physics. Of these, 12 teach mathematics and 4 teach both physics andmathematics. How many teach physics?
 (A) 10
 (B) 12

8 (C)

29. If t_n denotes the nth term of the series 2 + 3 + 6 + 11 + 18 + ... then t_{50} is (A) $49^2 - 1$ (B) 49^2 (C) $50^2 + 1$ (D) $49^2 + 2$

(D) 4

30. The expression $\left(x + (x^3 - 1)^{\frac{1}{2}}\right)^5 + \left(x - (x^3 - 1)^{\frac{1}{2}}\right)^5$ is a polynomial of degree (A) 5 (B) 6 (C) 7 (D) 8

	ANSWER-KEY		24.	Consider the	follov	wing statements
	21.(C) 22.(B) 23.(D))24.(A)25.(A)		and choose t	he cor	rrect option.
	26.(B) 27.(B) 28.(C)	29.(D)30.(C)		(A) The thre	ad like	e cytoplasmic
				strands, run	ning fr	rom one cell
	BIOLO	GY		to other are	knowi	n as plasmodesmata.
				(B) Xylem ar	nd phle	oem constitute the
21	Which of the follow	ing sets does not		vascular bur	ndles d	of the stem.
21.	contain defining cha	racteristics of living		(C) The first	forme	ed xylem elements
	organisms?			are describe	d as m	netaxylem.
	(A) Growth and ren	roduction		(D) Radial va	ascula	r bundles are
	(R) Metabolism and	cellular level of		mainly found	d in th	e leaves.
	organization			(A) (A) is tru	ie, but	(B), (C) and (D) are
	(C) Response to stim	nuliand		wrong.		
	consciousness			(B) (B) is tru	ie, but	(A), (C) and (D) are
	(D) All of these			wrong.		
				(C) (C) is tru	e, but	(A), (B) and (D) are
22.	Match the locomoto	rv organ given		wrong.		
	under column-I with	phylumin		(D) (A) and ((B) are	e true, but (C) and (D)
	which they are seen	listed under		are wrong.		
	column-II and choos	e the option				
	which gives the corr	ect combination.	25.	Tendons cor	nnect	
	COLUMN I	COLUMN II		(A) bone to t	oone .	
	A Pseudopodia	p. Mollusca		(B) bone to r	nuscle	
	B Parapodia	q.Chondrichthyes		(C) muscle to	o bloo	d vessel
	C Muscular foot	r. Protozoa		(D) nerve to	bone.	
	D Fins	s. Annelids	~ (
	(A) A=r,B=p, C=s, D=	P	26.	Match the Ite	ems in	column-I with those in
	(B) A=p,B=r, C=s, D=	p		column-II ar	ia cho	ose the correct option.
	(C) A=s,B=r, C=q, D=	р				
	(D) A=r,B=s, C=p, D	=q		2 Popo matr	iv.	A. USSEIII P. Nicel's bodies
				2.DUITE IIIdu	IX n	C Antibodios
23.	Match the following	and select the		A Lymphocy	n ntocD	Non-nucleated
	correct combination	from the options		(A) 1-D 2-B	3-C A	
	given below:-			(R) 1-D,2-Δ,	3-0, 4 3-0 4	-A -B
	Column I			(C) 1-D 2-R	3-Δ Δ.	-C
	A. Underground stem	1. Euphorbia		(D) 1-B 2-A	3-D 4	-C
	B. Stem tendril	2. Opuntia			0 0, 1	C C C C C C C C C C C C C C C C C C C
	C. Stem thorns	3. POTATO	27.	Match List-L	to List	t-II.
	D. Flattened Stem	4. Ultrus		List I		List II
			(A)	Metacentric	(i)	Centromere
	(A) A-1,D-2, U-3, U-3 (D) A 2 D 2 C A D 5	, ⊑-4				Chromosome
	(D) Α-2, D-3, C-4, D-3 (C) Λ-3 Β Λ C 5 D 1	, L-1 F_2				situated close to the
	(D) Δ-3 R-5 C-1 D-2	, ⊑ ∠ F-1				end forming one
	(U) A-3,U-3, U-4, U-2	, ∟ ⁻ I				one very long arms

(B)	Acrocentric	(ii)	Centromere at the terminal end
(C)	Sub- metacentric	(iii)	Centromere in the middle forming two equal arms of chromosomes
(D)	Telocentric	(iv)	Centromere slightly away from the middle forming one shorter arm and one Chromosomes longer arm

Choose the correct answer from the options given below:

(A) (a)-(i),(b)-(iii), (c)-(ii), (d)-(iv)
(B) (a)-(ii), (b)-(iii), (c)-(vi), (d)-(i)
(C) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
(D) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)

28. Read the following statements on lipids and find out correct set of statements:

(A) Lecithin found in the plasma membrane is a glycolipid.

(B) Saturated fatty acids possess one or more c=c bonds

(C) Gingely oil has lower melting point, hence remains as oil in winter(D) Lipids are generally insoluble in water but soluble in some organic solvents

(E) When fatty acid is esterified with glycerol, monoglycerides are fromed

Choose the correct answer from the options given below:

- (A)(a), (d) and (e) only
- (B) (c), (d) and (e) only
- (C) (a), (b) and (d) only

(D) (a), (d) and (c) only

29. The given flowchart represents the hierarchy of various taxonomic categories.

Identify the missing categories (A,B and C) And select the correct statements regarding these. (i) A is the taxonomic category which contains a number of related genera. (ii) Examples of category B are Monocotyledoneae, Dicotyledoneae, Mammalia, etc. (iii) C represents the basic unit of

taxonomic hierarchy.

(iv) Examples of category C are Fungi, Monera, Proteista , etc.

- (A) (i) and(ii)
- (B) (iii) and (iv)
- (C) (i), (ii) and (iv)
- (D) (i), (ii) and (iv)
- 30. Jacobson's organ is concerned with
 (A) smell
 (B) burrowing
 (C) touch
 (D) sight

ANSWER-KEY 21.(A) 22.(D) 23.(C) 24.(D) 25.(B) 26.(D) 27.(D) 28.(B) 29.(C) 30.(A)

MENTAL ABILITY

31. P and Q are brothers , X and Y are sisters, son of P is the brother of Y. How is Q related to X?

	(A) Father	(B) Brother		(C)3		(D) 6	
	(C) Daughter	(D) Uncle	27	A man is far	ing Nort	h East H	o turns 00°
32.	How many months months? (A) 72 (C) 80	are there in 7 yr 2 (B) 86 (D) 94	57.	in the clock in anti-clock direction is (A) East (C) North	wise dire wise dire wise dir he facing	ection and ection. W now? (B) Wes (D) Sout	t then 135° 'hich t
33.	At what time between 5:30 and 6 O'clock, will the hands of a clock be at right angle? (A) 43 ³ / ₁₁ min past 5 (B) 46 ⁴ / ₁₁ min past 5 (C) 40 min past 5 (D) 45 min past 5		38.	Direction: Study the problem figures and try to establish the relationship between them. From the answer figures, pick out the figure which most appropriately completes the series. Problem Figures :			
34.	How many squares figure contain?	does the following		(A) Answer	(B) Figures	[↓] (C) :	
	(C) 25	(D) 27		(1)	(2)	(3)	(4)
35.	If × stands for + , < for × , + stands for	stands for $-$, >stands $\dot{-}$, $-$ stands for =, $\dot{-}$	39.	Mita is talle Soni. Rita is	r than Ri taller tha	ta but noi an Sarita.	t as tall as Soni is not

- for \times , + stands for \div , stands for =, \div stands for >, and = stands for <, then which of the given equations is correct? (A) 8 < 4 \times 3 - 3 \times 2 \times 1 (B) 8 > 4 < 3 - 3 > 2 < 1 (C)8 + 4 < 3 \div 3 < 2 < 1 (D) 8 + 4 \times 3 = 3 > 2 \times 1
- **36.** If number 1 is marked on the bottom, which number will be on the top?

- Soni. Rita is taller than Sarita. Soni is not as tall as Rupa. Who among them is the tallest? (A) Mita (B) Rupa (C) Soni (D) Sarita
- 40. Amar travels one km due East, then 5 km due South, then 2km due East and finally 9 km due North . How far is from the starting point ?
 (A) 1 (Image of CD) 2 km

(A) 16km	(B) 8 km
(C) 6 km	(D) 5 km

ANSWER-KEY 31.(D) 32.(B) 33.(B) 34.(B) 35.(D) 36.(D) 37.(C) 38.(B) 39.(B) 40.(C)